ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Lester Goldstein, Alfred A. Strasser
Nuclear Technology | Volume 60 | Number 3 | March 1983 | Pages 352-361
Technical Paper | LWR Control Materials—I and II / Nuclear Fuel | doi.org/10.13182/NT83-A33122
Articles are hosted by Taylor and Francis Online.
Extended cycle lengths and fuel burnups are receiving increased attention. Frequently, the attendant fuel management strategies in pressurized water reactors (PWRs) require burnable poison shims to control power distribution and to maintain a negative moderator coefficient. High energy (∼450 effective full-power days) fuel cycles utilizing both out-in and low-leakage assembly placement schemes provide some insight to the relative merits of UO2-Gd2O3 (gadolinia)- versus boron-bearing shims for PWR applications. Relative to using boron-bearing burnable shims in PWRs, gadolinia has important potential advantages and disadvantages. With proper application, the advantages point to a reduction in fuel cycle costs and increased fuel management flexibility. However, for proper application, the more complex gadolinia neutronics and thermal-mechanical design characteristics must be modeled accurately.