ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Graydon L. Yoder, Jr., David G. Morris, Charles B. Mullins, Larry J. Ott
Nuclear Technology | Volume 60 | Number 2 | February 1983 | Pages 304-313
Technical Paper | Radiation Effects and Their Relationship to Geological Repository / Heat Transfer and Fluid Flow | doi.org/10.13182/NT83-A33086
Articles are hosted by Taylor and Francis Online.
A series of steady-state film boiling experiments have been conducted to show the effect of spacer grids on rod bundle heat transfer. Experiments were performed at the Oak Ridge National Laboratory in the Thermal-Hydraulic Test Facility, a pressurized water loop containing a 64-rod bundle, of which 60 rods are electrically heated. The bundle is equipped with detailed thermometry around two grids, which allows grid heat transfer effects to be studied. Rod surface temperature data show a 75 to 150 K temperature difference between measurements upstream and downstream of the grids, while heat transfer coefficients increase across the grids by 20%. Twenty to thirty hydraulic diameters are required for these effects to dissipate.