ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Winfried Amian, Detlev Stöver
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 279-290
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A33031
Articles are hosted by Taylor and Francis Online.
A laser boring technique has been used to simulate failed coatings of fuel particles. The cesium fractional release from irradiated failed particles is measured in time intervals during an annealing treatment at 1000 and 1200°C, respectively. In addition, the distribution of cesium along kernel and coating is measured by destructive gamma spectrometry. The fractional release versus time data are quantitatively recalculated by superposing diffusion from kernel and buffer layer using a two-zone assembly in spherical geometry. The derived kernel diffusion constants agree reasonably well with corresponding data from in-pile measurements.