ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Werner Oldekop, Hans-Dieter Berger, Wilfried Zeggel
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 212-227
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A33024
Articles are hosted by Taylor and Francis Online.
The main feature of an advanced pressurized water reactor (APWR) with improved fuel utilization is a plutonium-enriched tight lattice core integrated in an unchanged primary system of a common pressurized water reactor (PWR) power station. Neutron physical investigations demonstrate that conversion ratios in excess of 0.9 and final burnups of ∼45 000 MWd/tHM are obtained with a reload enrichment of 7.5% fissile plutonium. The moderator-void coefficient is calculated to be negative. The high-pressure drop of an APWR core is compensated for by a slightly reduced coolant flow rate. Despite the fact that calculated safety parameters such as void coefficient, critical heat flux margin, and emergency core cooling behavior have to be proven by experiments, the homogeneous concept of a high-converting PWR appears to be feasible.