ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Andr Preumont
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 483-491
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32982
Articles are hosted by Taylor and Francis Online.
Received July 30, 1980 Accepted for Publication March 10, 1982 The results of a study on the vibrational behavior of pressurized water reactor (PWR) fuel rods are presented. It is shown that a linear finite element model is representative for the low amplitude vibrations. A parametric study on the pellet diameter and the plenum spring force suggests that the vibrational behavior should be expected to change with irradiation. The amount of this change, however, can hardly be estimated from the very limited available experimental data. A typical PWR clad-to-grid connection is analyzed in detail from the point of view of vibratory wear. A procedure is presented to compute a minimum grid spring force consistent with the maximum allowed vibration amplitude.