ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Shunsuke Ishimoto, Kenji Ishibashi, Hideki Tenzou, Toshinobu Sasa
Nuclear Technology | Volume 138 | Number 3 | June 2002 | Pages 300-312
Technical Paper | Accelerators | doi.org/10.13182/NT02-1
Articles are hosted by Taylor and Francis Online.
Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven subcritical system (ADS). The ADS utilizes neutrons, which are generated by high-energy protons of giga-electron-volt-grade, but cross sections for the interaction of high-energy particles are not available for use in current ADS engineering design. In this paper the neutron behavior in the ADS target based on the related experimental data is clarified, and the feasibility of the ADS regarding both the molten salts (Flibe: 7LiF-BeF2-ThF4-233UF4, chloride: NaCl-ThCl4-233UCl4) and oxide ([Th, 233U]O2) fuels is examined. The difference between the experiment and the calculated result at the ADS high-energy region is discussed. In a comparison of the fuels, the time evolution of keff and the beam current in the burning period are calculated. The calculated results suggest that the ADS with solid fuel has better future prospects than that with molten-salt fuels. The ADS with Flibe molten-salt fuel tends to require a high beam current and consequently needs the installation of a metallic spallation target and the continuous removal for fission products and protactinium. In comparison with the Flibe fuel, the ADS with chloride fuel has a flux distribution that is similar to a solid fuel reactor.