ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Thomas G. Humphrey, Thomas H. Smith, Matthew C. Pope
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 136-349
Environmental Transport Mechanism | Radioactive Waste Management | doi.org/10.13182/NT82-A32925
Articles are hosted by Taylor and Francis Online.
Several alternative methods are being considered for the long-term isolation of buried transuranic waste at the Idaho National Engineering Laboratory. One important factor in selecting an alternative is the potential subsurface migration of radionuclides from the waste. Migration projections based on mathematical modeling have been developed for three alternative isolation methods: leave as is, improve in-place confinement, and retrieve and ship to an off-site repository. The projections suggest that radionuclides will not migrate in significant concentrations. Results of subsurface sampling studies suggest that very limited migration has occurred in the 25 years since the waste was buried.