ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
S. Shoaib Raza, Rubén R. Avila
Nuclear Technology | Volume 138 | Number 2 | May 2002 | Pages 211-216
Technical Note | Environmental Science, Technology and Effects | doi.org/10.13182/NT02-A3289
Articles are hosted by Taylor and Francis Online.
The direct gamma dose rates due to a stationary Gaussian plume of radionuclides in the atmosphere have been calculated using different models [Lagrangian dose model (LDM), Gaussian plume model (GPM), and uniform cloud model (UCM)], and the results are compared.The atmospheric parameters (used in the Lagrangian model) like mean and fluctuating wind components, etc., were obtained from the published field data on a neutral atmosphere. In the LDM, a continuous release of radionuclides into the atmosphere was simulated by liberating a large number of Lagrangian particles, whose trajectories were tracked for various hours in a three-dimensional computational domain. A point isotropic source formula was used for calculating the direct gamma dose contribution from all Lagrangian particles constituting the plume. Each particle represented a point source of radioactivity, whose strength was calculated from the known release rate and was subsequently allowed to decay as a function of time.The comparison of the LDM results with the GPM indicated that both models predict comparable results in a homogeneous atmosphere. The LDM is, however, more versatile, as it can incorporate variation in meteorological data in space and time (of course when available). The UCM also compared well for ground releases; however, it cannot be used for elevated releases and short downwind distances. The purpose of this work was to test the LDM for simulating the transport, dispersion, and decay of a radionuclide plume. The LDM shall later be used for complex topographic and meteorological conditions, where the GPM is not suitable.