ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. E. Chafey, D. I. Roberts
Nuclear Technology | Volume 55 | Number 1 | October 1981 | Pages 37-49
Technical Paper | Materials Performance in Nuclear Steam Generator / Material | doi.org/10.13182/NT81-A32830
Articles are hosted by Taylor and Francis Online.
High temperature gas-cooled reactor (HTGR) systems feature a graphite-moderated, uranium-thorium, all-ceramic core and utilize high pressure helium as the primary coolant. The steam generators in these systems are exposed to gas-side temperatures approaching 760°C (1400°F) and produce superheated steam at 538°C (1000°F) and 16.5 MPa (2400 psi). Thus, the design and development of steam generators for these systems require consideration of time-dependent materials behavior, corrosion, fretting, wear, and other related phenomena of concern in all steam generators. The prototype Peach Bottom Unit No. 1 40-MW (electric) HTGR was operated by the Philadelphia Electric Company for a total of 1349 equivalent full power days during a 7-yr period. Upon planned decommissioning of that plant, the forced-recirculation U-tube steam generators and other components were subjected to destructive properties tests and metallurgical examinations. These tests and examinations showed the steam generators to be in very satisfactory condition. The 330-MW(electric) Fort St. Vrain HTGR, owned and operated by Public Service Company of Colorado, and now in the final stages of startup, has achieved 70% power and generated more than 1.5 × 106 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, and their design and development required considering a number of new materials factors including creep fatigue. Also, because of the once-through design, water chemistry control needed special consideration. Current designs of larger HTGRs also feature steam generators of helical tube once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of very large tubesheet forgings, consideration of the gaseous corrosion effects of the primary coolant, and other related factors