ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. E. Chafey, D. I. Roberts
Nuclear Technology | Volume 55 | Number 1 | October 1981 | Pages 37-49
Technical Paper | Materials Performance in Nuclear Steam Generator / Material | doi.org/10.13182/NT81-A32830
Articles are hosted by Taylor and Francis Online.
High temperature gas-cooled reactor (HTGR) systems feature a graphite-moderated, uranium-thorium, all-ceramic core and utilize high pressure helium as the primary coolant. The steam generators in these systems are exposed to gas-side temperatures approaching 760°C (1400°F) and produce superheated steam at 538°C (1000°F) and 16.5 MPa (2400 psi). Thus, the design and development of steam generators for these systems require consideration of time-dependent materials behavior, corrosion, fretting, wear, and other related phenomena of concern in all steam generators. The prototype Peach Bottom Unit No. 1 40-MW (electric) HTGR was operated by the Philadelphia Electric Company for a total of 1349 equivalent full power days during a 7-yr period. Upon planned decommissioning of that plant, the forced-recirculation U-tube steam generators and other components were subjected to destructive properties tests and metallurgical examinations. These tests and examinations showed the steam generators to be in very satisfactory condition. The 330-MW(electric) Fort St. Vrain HTGR, owned and operated by Public Service Company of Colorado, and now in the final stages of startup, has achieved 70% power and generated more than 1.5 × 106 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, and their design and development required considering a number of new materials factors including creep fatigue. Also, because of the once-through design, water chemistry control needed special consideration. Current designs of larger HTGRs also feature steam generators of helical tube once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of very large tubesheet forgings, consideration of the gaseous corrosion effects of the primary coolant, and other related factors