ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Constantine P. Tzanos
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 662-673
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT81-A32811
Articles are hosted by Taylor and Francis Online.
Maximum cladding temperatures in heterogeneous liquid-metal fast breeder reactors (LMFBRs) can be reduced if the flow allocation between core and blanket assemblies is continuously varied during burnup. An analytical model has been developed that optimizes the time variation of the flow such that the reduction in maximum cladding temperatures is maximized. In addition, the concept of continuously varying the flow allocation between core and blanket assemblies has been evaluated for different fuel management schemes in a low sodium void reactivity 3000-MW heterogeneous LMFBR. This evaluation shows that (a) the reduction in maximum cladding midwall temperatures is small (~10°C) if the reactor is partially refueled at the end of each burnup cycle (cycle length of one year), and (b) this reduction is increased to 20°C if a straight burn fuel scheme is used with a core and internal blanket fuel residence time of two years.