ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Yoshiaki Oka, Ichiroh Yanagisawa, Shigehiro
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 642-655
Technical Paper | Radioisotopes and Isotope | doi.org/10.13182/NT81-A32809
Articles are hosted by Taylor and Francis Online.
A design study of the neutron irradiation facility for boron neutron capture therapy was performed using two-dimensional transport calculations. Dosedepth distributions in a phantom head were calculated for various neutron energies. The epithermal neutrons having the energies between 10 eV and 0.5 keV are suitable for the therapy. To obtain the epithermal neutron beam, the neutrons leaking downward through the central hole of the annular core TRIGA reactor were moderated through a mixture of heavy water with aluminum whose volume ratio is 15:85. Bismuth and lithium fluoride tile was used to remove gamma rays and thermal neutrons from the beam. Iron, borated polyethylene, and lead were used as the shield surrounding the moderation layer. When the epithermal neutron column is used, the maximum usable depth and irradiation time are 6.9 cm and 7.25 h, respectively, at a 2-MW level.