ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Yoshiaki Oka, Ichiroh Yanagisawa, Shigehiro
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 642-655
Technical Paper | Radioisotopes and Isotope | doi.org/10.13182/NT81-A32809
Articles are hosted by Taylor and Francis Online.
A design study of the neutron irradiation facility for boron neutron capture therapy was performed using two-dimensional transport calculations. Dosedepth distributions in a phantom head were calculated for various neutron energies. The epithermal neutrons having the energies between 10 eV and 0.5 keV are suitable for the therapy. To obtain the epithermal neutron beam, the neutrons leaking downward through the central hole of the annular core TRIGA reactor were moderated through a mixture of heavy water with aluminum whose volume ratio is 15:85. Bismuth and lithium fluoride tile was used to remove gamma rays and thermal neutrons from the beam. Iron, borated polyethylene, and lead were used as the shield surrounding the moderation layer. When the epithermal neutron column is used, the maximum usable depth and irradiation time are 6.9 cm and 7.25 h, respectively, at a 2-MW level.