ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. F. Carew, D. K. Min, A. L. Aronson
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 565-567
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A32799
Articles are hosted by Taylor and Francis Online.
An evaluation of the effects of the neutron spectral shift between the surveillance capsule and vessel on the prediction of radiation-induced pressure vessel (PV) embrittlement has been made. A spectral lead factor, Ls, that accounts for this spectral shift and its effect on predicting change in vessel reference nil ductility temperature (ΔRTNDT) is defined. Using multigroup neutron spectra calculated for the Three Mile Island-2 core/vessel configuration and the damage cross sections developed by Serpan, Ls has been determined and found to result in significant underpredictions of ΔRTNDT. For a standard surveillance capsule located near the PV inner wall, ΔRTNDT is underpredicted by ~10 and ~50% at the T/4 and 3T/4 vessel locations, respectively.