ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. C. Gose, C. E. Peterson, N. L. Ellis, J. A. McClure
Nuclear Technology | Volume 54 | Number 3 | September 1981 | Pages 298-310
First International Retran Meeting | Heat Transfer and Fluid Flow | doi.org/10.13182/NT81-A32775
Articles are hosted by Taylor and Francis Online.
The RETRAN-01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. The principal assumption in deriving the point kinetics model is that the neutron flux may be separated into a time-dependent amplitude function and a time-independent shape function. Some transients cannot be correctly analyzed under this assumption, since proper definitions for core average quantities such as reactivity or lifetime include the inner product of the adjoint flux with the perturbed flux. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. The model is based on a space-time factorization method in which the neutron flux behavior is factored into a time-dependent amplitude function and a more slowly varying (in time) shape function. Results from simple slab geometry problems indicate good agreement with known solutions. Calculations that represent larger systems show that correct trends are predicted.