ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
C. C. Lin, C. R. Pao, J. S. Wiley, W. R. DeHollander
Nuclear Technology | Volume 54 | Number 3 | September 1981 | Pages 253-265
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A32770
Articles are hosted by Taylor and Francis Online.
A mathematical model of corrosion product transport in the boiling water reactor (BWR) primary system has been developed. The model, which can be characterized as a semi-empirical phenomenological model, is capable of reproducing the observed data obtained in many BWRs with a variety of operational histories and a wide range of radiation levels. The results of parametric studies confirm the successful experience that the radiation fields in operating plants can be controlled and reduced by close control of the water quality in the primary system. The radiation field measured at recirculation piping of a new plant can be controlled below 200 mR/h over its entire plant life.