ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
A. R. Shepherd, J. N. Anno
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 435-436
Technical Note | Material | doi.org/10.13182/NT81-A32719
Articles are hosted by Taylor and Francis Online.
Radiation-induced outgassing was measured for several metals exposed to 60Co gamma radiation. The metals, in the form of tubes or rods, were placed in a Type 304 stainless-steel vacuum system. It was determined that the array of the pins (either square or hexagonal) did not significantly affect the results. The measurements for Type 304 stainless steel varied from (1.42 ± 1.75) × 10−9 (Pa - ℓ)/(cm2 ·s) per Mrad/h for a surface-to-volume (S/V) ratio of 8.64 cm−1 to (9.58 ± 3.81) ×10−10(pa - ℓ)/(cm2·s) for an S/V ratio of 3.08 cm−1. For Type 316 stainless steel, the determination was (1.18 ± 0.49) × 10−9 (pa - ℓ)/(cm2·s) per Mrad/h, for aluminum the value was (6.24 ± 17.2) × 10−10 and for carbon (2.28 ± 0.59) × 10−9 (pa - ℓ.)/(cm2·s) per Mrad/h. The determinations were made by comparing the rate-of-rise pressure curves with and without gamma radiation, and large errors resulted when the differences were small.