ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Samuel H. Levine, Mortimer A. Schultz, Daren Chang
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 347-353
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A32709
Articles are hosted by Taylor and Francis Online.
The objective of this paper is to develop a device to measure the k∞ of a spent fuel assembly used in light water reactors. A subcritical assembly having a cross configuration is designed to allow measurement of the k∞ of a spent fuel assembly by comparing the change in its multiplication with that of a fuel assembly of known k∞. Calculations have been performed using nucleonic codes to develop polynomial equations that relate the k∞ of the spent fuel assembly to measured data. The measurements involve taking count rates with the spent fuel assembly in the center position of the subcritical assembly, and the measured data are the count rate ratio of the spent fuel assembly over the count rate taken with a fuel assembly of known k∞. The polynomial equations are easy to program on a microcomputer, which, together with the subcritical assembly, form the k∞ meter.