ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ralf Wittmaack
Nuclear Technology | Volume 137 | Number 3 | March 2002 | Pages 194-212
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3268
Articles are hosted by Taylor and Francis Online.
To reduce the radiological consequences of postulated severe accidents, the design of future European nuclear reactors includes measures to avoid basemat penetration in case of a core meltdown. The considered retention schemes include a temporary retention of the debris in the reactor pit followed by the spreading of the accumulated molten corium with subsequent flooding and cooling.To contribute to the verification of such concepts, numerical simulations of the spreading process were performed with the CORFLOW code. These are based on an extensive verification and validation effort, i.e., the code has also been applied successfully to several flow, heat transfer, and phase transition problems of water, glycerol, cerrotru- (low-melting Bi-Sn alloy), and thermite- and corium-melts.Physical and numerical methods are described as well as code applications to analytical solutions, spreading experiments, and reactor corium-spreading processes.