ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
V. A. Kazakov, A. S. Pokrovsky, A. V. Smirnov
Nuclear Technology | Volume 53 | Number 3 | June 1981 | Pages 392-406
Technical Paper | Nuclear Fuel Cycle Education Module / Material | doi.org/10.13182/NT81-A32648
Articles are hosted by Taylor and Francis Online.
The effect of neutron irradiation on the mechanical properties, structure, and peculiarities of void formation in the Mo-Zr-B alloy within the temperature range from 400 to 1080° C and fluences (1.3 to 11.5) · 1025 n/m2 (>0.1 MeV) has been investigated. The results from radiation studies of poly- and monocrystalline molybdenum, Mo—0.12 Zr—0.16 Ti alloy and of the Mo-Zr-B alloys with different initial thermal treatment have been analyzed. At temperatures of 950 and 1080°C, the voids of nonequiaxial shape are formed, and at 1010°C only planar defects, supposedly thin precipitates, are observed. These results show a minimum swelling of the Mo-Zr-B alloy at 1010°C. It is expected that the peculiarities of void evolution in the Mo-Zr-B alloy are due to the impurity precipitation on void faces. A good correlation of the calculated and experimental values for radiation strengthening of the alloy as a result of voids and dislocation loops within a wide range of their sizes and concentrations was observed. A connection was found between the reduction of the uniform elongation within the temperature range from 400 to 900° C and voidage parameters. A maximum strengthening of the alloy takes place after irradiation at 635°C, which results from a high density of both 1.5-nm-diam voids and the dislocation loops.