ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Z. T. Mendoza, C. A. Stevens, R. L. Ritzman
Nuclear Technology | Volume 53 | Number 2 | May 1981 | Pages 155-162
Technical Paper | Realistic Estimates of the Consequences of Nuclear Accident / Nuclear Safety | doi.org/10.13182/NT81-A32620
Articles are hosted by Taylor and Francis Online.
Methodology often used to estimate the consequences of postulated nuclear reactor accidents was applied in an analysis of the SL-1 reactor accident, which occurred in January 1961. The work focused on use of the CORRAL and CRAC computer codes to predict radionuclide leakage from the accident and resulting downwind environmental contamination levels. Results were compared with findings developed from actual post-accident environmental sampling and analysis. The comparison indicated that the predictive capabilities of the two reactor accident consequence codes can be quite dependent on the input specifications for the analysis. In particular, the results show that the amount and the state of the initial source term is of considerable importance in determining the magnitude of the environmental contamination.