ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
J. F. Relyea
Nuclear Technology | Volume 51 | Number 2 | December 1980 | Pages 156-161
Technical Paper | Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste | doi.org/10.13182/NT80-A32595
Articles are hosted by Taylor and Francis Online.
Diffusion is the process by which atomic and molecular size particles move from regions of high concentration to regions of lower concentration. This movement is quantified by Fick’s first law, which states that the magnitude of the particle flux is directly proportional to the concentration gradient; and that the direction of movement is toward lower concentrations. The proportionality constant in Fick’s first law is the diffusion coefficient. Tempera¬ture, pressure, particle size, and charge, in addition to properties of the surrounding media, affect the diffusion coefficient. Mass transport by diffusion is greatest initially when concentration gradients are large. The diffusion process subsequently reduces gradients in concentrations, which, in turn, slows transport of mass by diffusion.