ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Marcus N. Myers, Kathy A. Graff, J. Calvin Giddings
Nuclear Technology | Volume 51 | Number 2 | December 1980 | Pages 147-155
Technical Paper | Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste | doi.org/10.13182/NT80-A32594
Articles are hosted by Taylor and Francis Online.
Field-flow fractionation (FFF) is a versatile analytical separation technique that has proven to be applicable to a wide range of polymers, colloids,and fine oarticles over the effective molecular weight range 103 to 1016, corresponding to diameters of 0.001 to 30 µm. Several subtechniques of FFF have been developed for which there are precise theoretical relationships of retention to particle parameters. Fractionation takes place in a thin flow channel by the interaction of a lateral field (gravitational or centrifugal in the case of sedimentation FFF, cross flow in flow FFF, electrical in electrical FFF, and temperature differential in thermal FFF) with the flow profile. Steric FFF, a limiting form of FFF, is applicable to the largest particles, from 1 up to 30 μm or more in diameter, and can also be used in a preparative mode. Altogether FFF has the potential of separating and characterizing radioactive species and the diverse materials with which they are associated in the environment over a size range where analysis by conventional techniques is difficult or impossible.