ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Marcus N. Myers, Kathy A. Graff, J. Calvin Giddings
Nuclear Technology | Volume 51 | Number 2 | December 1980 | Pages 147-155
Technical Paper | Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste | doi.org/10.13182/NT80-A32594
Articles are hosted by Taylor and Francis Online.
Field-flow fractionation (FFF) is a versatile analytical separation technique that has proven to be applicable to a wide range of polymers, colloids,and fine oarticles over the effective molecular weight range 103 to 1016, corresponding to diameters of 0.001 to 30 µm. Several subtechniques of FFF have been developed for which there are precise theoretical relationships of retention to particle parameters. Fractionation takes place in a thin flow channel by the interaction of a lateral field (gravitational or centrifugal in the case of sedimentation FFF, cross flow in flow FFF, electrical in electrical FFF, and temperature differential in thermal FFF) with the flow profile. Steric FFF, a limiting form of FFF, is applicable to the largest particles, from 1 up to 30 μm or more in diameter, and can also be used in a preparative mode. Altogether FFF has the potential of separating and characterizing radioactive species and the diverse materials with which they are associated in the environment over a size range where analysis by conventional techniques is difficult or impossible.