ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
L. F. Hansen, C. Wong, T. T. Komoto, B. A. Pohl, R. J. Howerton
Nuclear Technology | Volume 51 | Number 1 | November 1980 | Pages 70-77
Technical Paper | Material | doi.org/10.13182/NT80-A32557
Articles are hosted by Taylor and Francis Online.
Spherical assemblies of copper with radii (R) equal to 1.0, 3.0, and 5.0 mean-free-paths (mfp) for 14-MeV neutrons, niobium (R = 0.9 and 3.2 mfp), 232Th (R = 1.0 mfp), and 238U (R = 1.0 and 3.1 mfp) have been bombarded with a centered nominal 14-MeV neutron source. The neutron leakage spectra have been measured from 0.8 to 14 MeV using a stilbene scintillator, time-of-flight techniques, pulse-shape discrimination and ∼10-m flight paths. The measured spectra are compared with calculations carried out with TARTNP, a coupled neutron-photon Monte Carlo transport code, using the ENDF/B-IV and -V neutron libraries. For copper and 238U, the reevaluated cross sections at ∼14 MeV in ENDF/B-V are somewhat less satisfactory in fitting the experimental results than those in ENDF/B-IV. For 232Th, ENDF/B-V shows significant improvement. The niobium cross sections, which were not reevaluated between ENDF/B-IV and -V, provide poor fits to the measurements.