ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
L. F. Hansen, C. Wong, T. T. Komoto, B. A. Pohl, R. J. Howerton
Nuclear Technology | Volume 51 | Number 1 | November 1980 | Pages 70-77
Technical Paper | Material | doi.org/10.13182/NT80-A32557
Articles are hosted by Taylor and Francis Online.
Spherical assemblies of copper with radii (R) equal to 1.0, 3.0, and 5.0 mean-free-paths (mfp) for 14-MeV neutrons, niobium (R = 0.9 and 3.2 mfp), 232Th (R = 1.0 mfp), and 238U (R = 1.0 and 3.1 mfp) have been bombarded with a centered nominal 14-MeV neutron source. The neutron leakage spectra have been measured from 0.8 to 14 MeV using a stilbene scintillator, time-of-flight techniques, pulse-shape discrimination and ∼10-m flight paths. The measured spectra are compared with calculations carried out with TARTNP, a coupled neutron-photon Monte Carlo transport code, using the ENDF/B-IV and -V neutron libraries. For copper and 238U, the reevaluated cross sections at ∼14 MeV in ENDF/B-V are somewhat less satisfactory in fitting the experimental results than those in ENDF/B-IV. For 232Th, ENDF/B-V shows significant improvement. The niobium cross sections, which were not reevaluated between ENDF/B-IV and -V, provide poor fits to the measurements.