ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. K. Bhattacharyya, J. A. Morman, R. G. Bucher, D. M. Smith, W. R. Robinson, E. F. Bennett
Nuclear Technology | Volume 50 | Number 3 | October 1980 | Pages 197-218
Technical Paper | Reactor | doi.org/10.13182/NT80-A32524
Articles are hosted by Taylor and Francis Online.
A possible accident scenario in a gas-cooled fast reactor (GCFR) is the leakage of secondary steam into the core. A full-scale experimental study of the physics effects of such an accidental condition has been performed on the zero power reactor (ZPR)-9 critical facility at Argonne National Laboratory. Polyethylene foam strips were used to simulate steam for these measurements. The basic neutronics parameters, namely, neutron spectrum, spectral indexes, reactivity worths, 238U Doppler effect, and B4C control rod worths, were measured in the steam-flooded GCFR critical assembly and also in the corresponding dry, reference GCFR assembly. The results of these measurements clearly show the spectrum softening effects on steam entry. For the analysis of the experiments, ENDF/B-IV-based data were used with two-dimensional diffusion theory methods. It was concluded that the values of the primary safety parameters increased upon steam entry relative to the reference dry case. Such an increase would mitigate the effects of accidental steam entry in a GCFR.