ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
C. C. Chapman, J. L. Buelt
Nuclear Technology | Volume 49 | Number 2 | July 1980 | Pages 196-208
Nuclear Fuel Cycle | Fuel Cycle | doi.org/10.13182/NT80-A32482
Articles are hosted by Taylor and Francis Online.
Vitrification tests in a continuous ceramic-lined melter have been completed with simulated radioactive wastes typical of those existing at the Savannah River Laboratory and at U.S. Department of Energy’s Hanford Laboratory. The results of these experiments suggest that immobilization of radioactive waste by vitrification is a promising approach for nuclear waste management. Process rates ranging from 25 to 160 kg/h were observed for simulated powdered waste glasses in the liquid-fed continuous melter. Entrapment of gas in glass bubbles or foaming at the chemical reaction layer caused a marked decrease in the processing rate. Several chemical blends were tested to assess their meltability and susceptibility to foaming. Foaming at the reaction layer was avoided in all but one of eight chemical blends. Differences in the amount of powder accumulated above the molten glass and the subsequent meltdown times strongly indicated that major variations in the meltability existed between the various chemical blends. Prototypic sized canisters (0.4, 0.61, and 0.91 m in diameter and 2.9 m tall) were filled and examined. Canisters were filled at an average rate of 76 to 93 kg/h while standing in air. The homogeneous glass product filled the canisters except for some rippled gaps at the canister wall. Gaps up to 6.4 mm were found. Unless, the radioactive decay heat exceeds the concentrations in existing wastes by a factor of 10 or more, the gaps are believed to be acceptable.