ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Otohiko Aizawa, Keiji Kanda, Tetsuya Nozaki, Tetsuo Matsumoto
Nuclear Technology | Volume 48 | Number 2 | April 1980 | Pages 150-163
Technical Paper | Radiation | doi.org/10.13182/NT80-A32461
Articles are hosted by Taylor and Francis Online.
The remodeling of the neutron irradiation facility of the Musashi Institute of Technology Reactor (TRIGA Mark II, 100 kW) was carried out for the purpose of boron neutron capture therapy. The gamma contamination was reduced by the bismuth scatterer technique, and the thermal-neutron intensity was enlarged by virtue of the cavity effect. A 6LiF sheet was used instead of a 10B sheet for neutron collimation to minimize production of the secondary gamma rays. The characteristics of the optimized field are as follows: ɸth ≈ 1.3 × 1013 m-2· s-1 (1.3 × 109 n/cm2·s), gamma rays ≈ 1.8 × 10-6 O kg-1· s-1 (25 R/h), γ/n ≈ 0.5% in dose equivalent. When a phantom head was placed at the irradiation aperture, the neutron fluence rate (flux) and gamma-ray exposure rate increased to ∼2 × 1013 m-2 · s-1 (2 × 109 n/cm2 · s) and 1.1 × 10-5 C· kg-1 · s-1 (150 R/h), respectively, by the reflection of neutrons and capture gamma rays due to the phantom itself. The facility was licensed by the Japanese government to be used for the medical irradiation purposes on July 20, 1976.