ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
R. Nijsing, W. Eifler
Nuclear Technology | Volume 46 | Number 2 | December 1979 | Pages 289-299
Technical Paper | Nuclear Power Reactor Safety (Presented at the ENS/ANS International Meeting, Brussels, Belgium, October 16–19, 1978) / Reactor | doi.org/10.13182/NT79-A32329
Articles are hosted by Taylor and Francis Online.
The present version, THARC-S, of the transient thermohydraulic subassembly code, THARC, under development at the Joint Research Centre at Ispra, has been applied to predict the transient thermohydraulic behavior of liquid-metal fast breeder reactor subassemblies subjected to loss-of-flow conditions. Information is given on the present status of development of THARC. Computational results are presented for 217-rod subassemblies, both for grid and wire spacers. It is shown that radial power gradients and overcooling in the region adjacent to the wrapper wall cause boiling inception in the subassembly to be incoherent with, as a consequence, a more gradual boiling and voiding process than expected on the basis of a one-dimensional approach. It is demonstrated that heat capacity effects associated with the fuel rods and the wrapper wall are of considerable importance. Aspects associated with code validation in out-of-pile bundle experiments are also briefly discussed.