ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. L. Casadei, P. J. Turinsky
Nuclear Technology | Volume 44 | Number 2 | July 1979 | Pages 221-230
Technical Paper | Reactor | doi.org/10.13182/NT79-A32257
Articles are hosted by Taylor and Francis Online.
Accurate and economical methods have been developed to model water density feedback in diffusion calculations for application to pressurized water reactors. Spectral variations of the two-group macroscopic cross sections are accurately modeled by second-order polynomials in water density. Open channel and subcooled boiling effects on the core’s water density distribution are evaluated by coupling three-dimensional thermal-hydraulic and neutron diffusion computer codes. The costly requirement of numerical mesh compatibility between these codes is removed without loss of accuracy. The margin to fuel degradation limits during accident conditions is found to increase when the improved feedback model is employed, serving as a stimulus for further usage.