ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. R. Bierman, B. M. Durst, E. D. Clayton, R. I. Scherpelz, Howard T. Kerr
Nuclear Technology | Volume 44 | Number 1 | June 1979 | Pages 141-151
Technical Paper | Fuel Cycle | doi.org/10.13182/NT79-A32247
Articles are hosted by Taylor and Francis Online.
A series of criticality experiments with fast test reactor (FTR) fuel pins in water has been performed in support of the Advanced Fuel Recycle Program (AFRP). The objective of these experiments was to provide clean, easily defined criticality data on AFRP-type fuel pins in water for use in verifying calculational techniques and nuclear data used in calculations. Measurement data were obtained on water-flooded square lattices of FTR fuel pins. The number of fuel pins required for criticality was determined at lattice pitches of 7.7, 9.5, 9.7, 12.6, 15.3, and 19.1 mm to be 1268, 605, 580, 219, 205, and 162, respectively. These center-to-center fuel pin spacings correspond to water-to-fuel volume ratios of 1.61, 3.33, 3.49, 6.81, 10.88, and 17.53, respectively, and cover the neutron moderation range from near optimum to the highly undermoderated. KENO-IV calculations with ENDF data from the AMPX system overestimated the experimental results by 1 to 2% in keff. KENO-IV calculations with FLANGE-ETOG-THERMOS-EGGNIT-processed ENDF data resulted in calculated values 1 to 6% high in keff.