ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. R. Bierman, B. M. Durst, E. D. Clayton, R. I. Scherpelz, Howard T. Kerr
Nuclear Technology | Volume 44 | Number 1 | June 1979 | Pages 141-151
Technical Paper | Fuel Cycle | doi.org/10.13182/NT79-A32247
Articles are hosted by Taylor and Francis Online.
A series of criticality experiments with fast test reactor (FTR) fuel pins in water has been performed in support of the Advanced Fuel Recycle Program (AFRP). The objective of these experiments was to provide clean, easily defined criticality data on AFRP-type fuel pins in water for use in verifying calculational techniques and nuclear data used in calculations. Measurement data were obtained on water-flooded square lattices of FTR fuel pins. The number of fuel pins required for criticality was determined at lattice pitches of 7.7, 9.5, 9.7, 12.6, 15.3, and 19.1 mm to be 1268, 605, 580, 219, 205, and 162, respectively. These center-to-center fuel pin spacings correspond to water-to-fuel volume ratios of 1.61, 3.33, 3.49, 6.81, 10.88, and 17.53, respectively, and cover the neutron moderation range from near optimum to the highly undermoderated. KENO-IV calculations with ENDF data from the AMPX system overestimated the experimental results by 1 to 2% in keff. KENO-IV calculations with FLANGE-ETOG-THERMOS-EGGNIT-processed ENDF data resulted in calculated values 1 to 6% high in keff.