ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
H. Yamada
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 324-331
Technical Paper | Material | doi.org/10.13182/NT79-A32187
Articles are hosted by Taylor and Francis Online.
To understand the effects of the fuel-cladding mechanical interaction on the failure of 20% cold-worked Type 316 stainless-steel cladding during anticipated nuclear reactor transients, the transient mechanical response of the cladding was investigated using a transient tube burst method at a heating rate of 5.6° C/s and axial-to-hoop-stress ratios in the range of ½ to 2. The failure temperatures were observed to remain essentially constant for the transient tests at axial-to-hoop-stress ratios between ½ and 1, but to decrease with an increase in axial-io-hoop-stress ratios above unity. The uniform diametral strains to failure were observed to decrease monotonically with an increase in axial-to-hoop-stress ratio from ½ to 2, and in general, the uniform axial strains to failure were observed to increase with an increase in axial-to-hoop-stress ratio. The fracture of the cladding during thermal transients was found to be strongly affected by the maximum principal stress but not by the effective stress.