ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
R. C. Sanders, G. E. Mueller
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 289-296
Technical Paper | Reactor Siting | doi.org/10.13182/NT79-A32182
Articles are hosted by Taylor and Francis Online.
The maximum credible accident for which a nuclear reactor must be analyzed is a loss-of-coolant accident (LOCA) due to a major rupture in the primary system. Such an accident has been analyzed for a conceptual design of a consolidated nuclear steam system (CNSS) using the thermal-hydraulic computer code RELAP4/MOD5. The results of the analysis show that the maximum fuel cladding temperature during the accident is ∼344°C (652°F), which is sufficiently low to preclude any damage to the reactor core. Based on the results of this analysis, it appears that a LOCA in a CNSS may be less severe than in typical loop-type pressurized water and boiling water reactors. This result is expected because of the smaller piping connected to the CNSS reactor vessel