ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. R. Haffner, R. W. Hardie
Nuclear Technology | Volume 42 | Number 2 | February 1979 | Pages 123-132
Technical Paper | Thorium Fuel Cycle in a Breeder Economy / Fuel Cycle | doi.org/10.13182/NT79-A32142
Articles are hosted by Taylor and Francis Online.
Nuclear nonproliferation considerations have resulted in renewed interest in the thorium fuel cycle. Reactor physics parameters of a typical 1200-MW(electric) fast breeder reactor design were compared for the cases when 233U is substituted for plutonium as a fissile fuel and when 232Th is substituted for 238U as a fertile fuel When the 238U in the blanket is replaced with 232Th, the reactor physics parameters are relatively unchanged. However, replacing 238U in the core with 232Th increases the critical mass by 11 to 15% and decreases the breeding ratio by 0.13 to 0.16. In addition, replacing the plutonium in the core with 233U decreases the critical mass by 4 to 6% and decreases the breeding ratio by 0.13 to 0.16. Both of the changes in the core make the sodium void coefficient more negative.