ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jungchung Jung, Mohamed A. Abdou
Nuclear Technology | Volume 41 | Number 1 | November 1978 | Pages 71-86
Technical Paper | Shielding | doi.org/10.13182/NT78-A32134
Articles are hosted by Taylor and Francis Online.
The geometric representation and the multidimensional calculational method for neutronics analysis of tokamak reactors with major penetrations have been examined. It has been found that two-dimensional models are useful for scoping studies but that three-dimensional models are necessary for detailed design studies. The material and geometry requirements of local exterior penetration shields are examined. The level of radiation streaming is parametrized as a function of the penetration size and shape. A dual-purpose duct system in which the evacuation (vacuum pumping) ducts are connected to the neutral beam ducts at locations outside the bulk shield is an attractive approach. This system reduces the overall shield requirements and potentially permits orders of magnitude reduction in the radiation level at the vacuum pumps. A comparison of the two plasma supplementary heating methods—radio frequency (rf) and neutral beams—shows that the rf system offers considerable advantage over the neutral beam system in terms of lower shielding requirements and easier control of the radiation dose in the reactor building.