ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
L. A. Lawrence, D. C. Hata, D. F. Washburn
Nuclear Technology | Volume 41 | Number 1 | November 1978 | Pages 60-70
Technical Paper | Fuel | doi.org/10.13182/NT78-A32133
Articles are hosted by Taylor and Francis Online.
Significant actinide redistribution was observed in the outer low-temperature region of uranium-plutonium mixed-oxide fuel Data from the large number of fuel pins examined indicated boundaries within which redistribution in the outer low-temperature regions of the fuel occurred. Plutonium redistribution was not observed in fuel pins with an initial fuel oxygen-to-metal ratio (O/M) of >1.98 or in fuel irradiated to burnups of <5.0 at.%. Fuel pins with an initial O/M ratio of 1.96 exhibited plutonium enrichments on the fuel outer periphery at a burnup of ≥5.0 at.%. At ∼6.5 at.% burnup, a transition in character of the actinide distribution occurred, resulting in plutonium enrichments in the equiaxed grain region and uranium enrichments on the outer periphery of the fuel. Increasing the fuel initial O/M to 1.97 decreased the burnup at which plutonium enrichment occurred near the equiaxed grain region from 6.5 to 5.0 at.%. Conversely, decreasing the initial O/M ratio from 1.96 to 1.95 increased the burnup at which plutonium enrichment occurred in the equiaxed grain region from ∼6.5 to ∼7.5 at.%.