ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
E. Kujawski, R. Protsik
Nuclear Technology | Volume 41 | Number 1 | November 1978 | Pages 36-45
Technical Paper | Reactor | doi.org/10.13182/NT78-A32131
Articles are hosted by Taylor and Francis Online.
A practical method for self-shielding resonance cross sections for fast reactors with complex heterogeneity results in a multiregion equivalence relation that is identical in appearance to the conventional two-region equivalence relation. The effects of heterogeneity are accounted for in terms of material- and region-dependent escape cross sections. The escape cross sections are explicitly given in terms of the first-flight collision probabilities or transport coefficient. The formulation is well suited for use with the shielding factor method. A detailed validation of the heterogeneity calculations with the proposed formulation has been carried out for plate-type cells, and good agreement with Monte Carlo results has been obtained. Sensitivity studies were performed to compare the proposed multiregion heterogeneity treatment with conventional two-region treatments. The results suggest that it may be important to self-shield explicitly and heterogeneously all the fuel and structural materials in the analysis of fast critical assemblies.