ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Chien-Hsiung Lee, I-Ming Huang, Chin-Jang Chang
Nuclear Technology | Volume 135 | Number 2 | August 2001 | Pages 109-122
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3209
Articles are hosted by Taylor and Francis Online.
The thermal-hydraulic behavior of a postulated 1% cold-leg break loss-of-coolant accident (LOCA) in a pressurized water reactor system was investigated experimentally by the three-loop Institute of Nuclear Energy Research (INER) Integral System Test (IIST) facility with the passive core cooling system (PCCS) and numerically by the RELAP5/MOD3.2 computer code. The PCCS of the IIST facility includes three core makeup tanks (CMTs), three accumulators, and a four-stage automatic depressurization system. The aim of this research is to study the performance of the CMTs with the actuation of the ADS during a small-break LOCA. The experimental results show that the IIST PCCS has the capability to maintain long-term cooling under a postulated 1% cold-leg break LOCA. The comparison of the RELAP5/MOD3.2 simulation against the experimental data shows good agreement in major thermal-hydraulic phenomena in the reactor coolant system, but the prediction of the asymmetric behavior for the three CMTs during a gravity drain period is inadequate.