ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Chien-Hsiung Lee, I-Ming Huang, Chin-Jang Chang
Nuclear Technology | Volume 135 | Number 2 | August 2001 | Pages 109-122
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3209
Articles are hosted by Taylor and Francis Online.
The thermal-hydraulic behavior of a postulated 1% cold-leg break loss-of-coolant accident (LOCA) in a pressurized water reactor system was investigated experimentally by the three-loop Institute of Nuclear Energy Research (INER) Integral System Test (IIST) facility with the passive core cooling system (PCCS) and numerically by the RELAP5/MOD3.2 computer code. The PCCS of the IIST facility includes three core makeup tanks (CMTs), three accumulators, and a four-stage automatic depressurization system. The aim of this research is to study the performance of the CMTs with the actuation of the ADS during a small-break LOCA. The experimental results show that the IIST PCCS has the capability to maintain long-term cooling under a postulated 1% cold-leg break LOCA. The comparison of the RELAP5/MOD3.2 simulation against the experimental data shows good agreement in major thermal-hydraulic phenomena in the reactor coolant system, but the prediction of the asymmetric behavior for the three CMTs during a gravity drain period is inadequate.