ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
R. F. Mattas, D. L. Smith
Nuclear Technology | Volume 39 | Number 2 | July 1978 | Pages 186-198
Technical Paper | Material | doi.org/10.13182/NT78-A32077
Articles are hosted by Taylor and Francis Online.
A computer model based on available materials property data has been developed to predict the lifetimes of first wall structural materials under a variety of reactor conditions. The model combines the materials property data with the appropriate ranges of limiting criteria to establish design lifetimes as functions of such relevant parameters as temperature and integrated neutron wall loading. Empirical equations developed from existing literature data were used to interpolate and extrapolate the required materials properties over the desired ranges. The present effort has concentrated on the evaluation of two candidate structural materials, namely, Type 316 stainless steel and a vanadium-base alloy (V-15% Cr-5% Ti). Curves have been derived that show the estimated lifetime and life-limiting property as a function of temperature for a specified set of design criteria, e.g., maximum swelling of 4%, minimum uniform elongation of 1%, and total creep strain of <1%, for an applied stress of 103 MPa (15 ksi). The results obtained indicate a much longer design lifetime for the vanadium-base alloy than for stainless steel under the conditions of interest. The computational model has been incorporated into the Tokamak Power Plant Systems Program at Argonne National Laboratory.