ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today unveiled 10 companies racing to bring test reactors online by next year to meet Trump's deadline of next Independance Day, leveraging a new DOE pathway that allows reactor authorization outside national labs. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Arne Jensen
Nuclear Technology | Volume 39 | Number 3 | August 1978 | Pages 283-288
Technical Paper | Fuel | doi.org/10.13182/NT78-A32058
Articles are hosted by Taylor and Francis Online.
The performance of the present-day Zircaloy-UO2 fuel design for water-cooled reactors has for several years been intensively examined and modeled. The established know-how is used as a background for the suggestion of a new design, named LOWI (LOW-Interaction), which, by merely introducing a small change in the arrangement of the fuel material, should lead to an improved performance with respect to mechanical interaction and, at the same time, should reduce the fuel center temperature and therefore consequently reduce the stored energy. Considerations that form the basis for the LOWI design are supported by the calculational results of some of the more important aspects. The design has been initially evaluated in an irradiation experiment, and the test results have generally supported the objectives of the design change.