ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
F. V. Nolfi, Jr., Che-Yu Li
Nuclear Technology | Volume 38 | Number 3 | May 1978 | Pages 405-414
Technical Paper | Material | doi.org/10.13182/NT78-A32038
Articles are hosted by Taylor and Francis Online.
One of the major problems in the development of structural alloys for use in magnetic fusion reactors (MFRs) is the lack of suitable materials testing facilities. This is because operating fusion reactors, even of the experimental size, do not exist. A primary task in the early stages of MFR alloy development will be to adapt currently available irradiation facilities for use in materials development. Thus, it is generally recognized that, at least for the next ten years, studies of irradiation effects in an MFR environment on the microstructure and mechanical properties of structural materials must utilize ion and fission neutron simulations. Special problems will arise because, in addition to displacement damage, an MFR radiation environment will produce, in candidate structural materials, higher and more significant concentrations of gaseous nuclear transmutation products, e.g., helium and hydrogen, than found in a fast breeder reactor. These effects must be taken into account when simulation techniques are employed, since they impact heavily on irradiation microstructure development and, hence, mechanical properties.