ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
F. V. Nolfi, Jr., Che-Yu Li
Nuclear Technology | Volume 38 | Number 3 | May 1978 | Pages 405-414
Technical Paper | Material | doi.org/10.13182/NT78-A32038
Articles are hosted by Taylor and Francis Online.
One of the major problems in the development of structural alloys for use in magnetic fusion reactors (MFRs) is the lack of suitable materials testing facilities. This is because operating fusion reactors, even of the experimental size, do not exist. A primary task in the early stages of MFR alloy development will be to adapt currently available irradiation facilities for use in materials development. Thus, it is generally recognized that, at least for the next ten years, studies of irradiation effects in an MFR environment on the microstructure and mechanical properties of structural materials must utilize ion and fission neutron simulations. Special problems will arise because, in addition to displacement damage, an MFR radiation environment will produce, in candidate structural materials, higher and more significant concentrations of gaseous nuclear transmutation products, e.g., helium and hydrogen, than found in a fast breeder reactor. These effects must be taken into account when simulation techniques are employed, since they impact heavily on irradiation microstructure development and, hence, mechanical properties.