ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Fariborz Taghipour, Greg J. Evans
Nuclear Technology | Volume 134 | Number 2 | May 2001 | Pages 208-220
Technical Paper | Radioisotopes | doi.org/10.13182/NT01-A3196
Articles are hosted by Taylor and Francis Online.
The impact of organic compounds on iodine volatility was investigated under a range of postaccident chemical conditions expected in a reactor containment structure. The rate of production of volatile iodine was evaluated in the presence of 10-3 M concentrations of carbonyl, alkyl halide, and aromatic compounds. A bench-scale apparatus, installed in the irradiation chamber of a Gammacell, was used to measure the rate of iodine volatilization from 10-6 to 10-4 M CsI solutions with pH values from 5 to 9. The results indicated that organic compounds could be classified into groups, based on their distinct effects on iodine volatility. Iodine volatilization increased significantly, up to two orders of magnitude, in the presence of carbonyl compounds and alkyl chlorides, while it decreased in the presence of aromatic compounds. Gas phase speciation indicated that organic iodides dominate the airborne iodine species in the presence of carbonyl compounds and alkyl halides.