ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Michael J. Kolar, Nolan C. Olson
Nuclear Technology | Volume 36 | Number 1 | November 1977 | Pages 56-64
Radiation Environments in Nuclear Reactor Power Plant | Reactor | doi.org/10.13182/NT77-A31958
Articles are hosted by Taylor and Francis Online.
A mathematical model was developed to calculate the dose to equipment inside containment of power reactors following a maximum hypothetical accident (MHA). The model permitted both instantaneous and time-dependent releases and incorporated decay chains up to six isotopes in length. The release of noble gases produced by the decay of halogens that plate out on surfaces or are trapped by filters was taken into account. The resulting equations were solved analytically. The gamma and beta dose due to an MHA from a 3-GW(th) reactor was computed using this model. Results show that the use of decay chains produces a 38% increase in dose, and an instantaneous release produces a dose that is 14% higher than the time-dependent release.