ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
G. Angerer
Nuclear Technology | Volume 36 | Number 3 | December 1977 | Pages 305-313
Technical Paper | Fuel | doi.org/10.13182/NT77-A31944
Articles are hosted by Taylor and Francis Online.
Cladding relocation upon melting has major consequences on the sequence of events in a transient undercooling accident in a liquid-metal fast breeder reactor (LMFBR). The CMOT code developed at the Karlsruhe Nuclear Research Center is used to simulate, by computation, cladding melt-off and blockage formation without and with the possibility of sodium vapor flow diversion. The latter phenomenon is of interest in case of incoherent cladding melt-off within an LMFBR subassembly. It turns out that large waves are generated on the liquid cladding film that quickly slide over a relatively thin slowly moving film. The motion of the waves contributes considerably to the mass transport of cladding film material and to the formation of blockages. The dynamics of these waves is a very important phenomenon of the cladding relocation process. The computed results indicate that cladding blockages in the upper and lower parts of the coolant channel will be established.