ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Constantine P. Tzanos, W. P. Barthold
Nuclear Technology | Volume 36 | Number 3 | December 1977 | Pages 262-274
Technical Paper | Reactor | doi.org/10.13182/NT77-A31940
Articles are hosted by Taylor and Francis Online.
A systematic method for designing heterogeneous configurations having a near-zero value of sodium void reactivity is presented. It is based on the following principles: (a) the thickness of the internal blanket zones should be such that the reactivity change resulting from voiding any core zone is practically independent of any further increase in the thickness of these zones, and (b) the sodium void reactivity of each core zone must have a near-zero value. Neutronic coupling among the core zones of heterogeneous configurations decreases as the thickness of the internal blanket zones increases. To quantify coupling, Avery’s coupling coefficients are used. Reduced coupling among the core zones of a heterogeneous design, compared to a homogeneous design, results in (a) increased sensitivity of the power distribution to enrichment distribution perturbations, (b) reduced reactivity worth of local perturbations, and (c) higher cladding temperatures during operational transients initiated by local perturbations. Heterogeneous designs compared to equivalent homogeneous designs have (a) lower core Doppler coefficient values, (b) larger fuel compaction reactivities, and (c) higher maximum cladding temperatures.