ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
B. F. Myers, N. L. Baldwin, W. E. Bell
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 501-508
Fission Product Release | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31910
Articles are hosted by Taylor and Francis Online.
A review and analysis of available data on the release of fission gases from high-temperature gas-cooled reactor fuel particles indicates that the release of short-lived nuclides (half-life ≲5.3 days) occurs from the fissile material primarily by a mechanism involving recoil followed by gas-phase and bulk diffusion in the surrounding material at temperatures up to at least 1300°C (1573 K). The gas-phase contribution to the release of short-lived nuclides is dominant at temperatures below 600°C (873 K), and bulk diffusion is dominant at temperatures above 900°C (1173 K). Fission gas release to birth ratio (R/B) varies with half-life to a power of ∼0.2 at 300°C (573 K) and ∼0.5 at 1100°C (1373 K). For the short-lived isotopes, R/B is independent of burnup over the range from 0 to 63% FIMA in UC2 kernels; for dense ThO2 kernels, the data are insufficient to determine the burnup dependence. For the long-lived and stable isotopes, release from dense ThO2 kernels is strongly dependent on burnup. Iodine and tellurium isotopes may be treated as if they were xenon isotopes.