ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. F. Myers, N. L. Baldwin, W. E. Bell
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 501-508
Fission Product Release | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31910
Articles are hosted by Taylor and Francis Online.
A review and analysis of available data on the release of fission gases from high-temperature gas-cooled reactor fuel particles indicates that the release of short-lived nuclides (half-life ≲5.3 days) occurs from the fissile material primarily by a mechanism involving recoil followed by gas-phase and bulk diffusion in the surrounding material at temperatures up to at least 1300°C (1573 K). The gas-phase contribution to the release of short-lived nuclides is dominant at temperatures below 600°C (873 K), and bulk diffusion is dominant at temperatures above 900°C (1173 K). Fission gas release to birth ratio (R/B) varies with half-life to a power of ∼0.2 at 300°C (573 K) and ∼0.5 at 1100°C (1373 K). For the short-lived isotopes, R/B is independent of burnup over the range from 0 to 63% FIMA in UC2 kernels; for dense ThO2 kernels, the data are insufficient to determine the burnup dependence. For the long-lived and stable isotopes, release from dense ThO2 kernels is strongly dependent on burnup. Iodine and tellurium isotopes may be treated as if they were xenon isotopes.