ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
D. Stöver, R. Hecker
Nuclear Technology | Volume 35 | Number 2 | September 1977 | Pages 465-474
Fission Product Release | Coated Particle Fuel / Fuel | doi.org/10.13182/NT77-A31906
Articles are hosted by Taylor and Francis Online.
Release data of cesium in Biso low-temperature isotropic (LTI) and high-temperature isotropic (HTI) coated particles are presented. Experimental and theoretical methods are briefly discussed. From the analysis of our experiments, kernel diffusion coefficients are calculated covering the kernel burnup range from 0.2 to 16% FIMA. At FIMA values ≥5%, cesium release is governed by the relatively low activation energy of ∼19 kcal/mole (79.6 kJ/mole), and even at temperatures as low as ∼900°C (1173 K), kernel retention remains low. The outer pyrocarbon layer acts as the release rate controlling barrier for both LTI and HTI coatings. Diffusion coefficients in the temperature range from 1000 to 1500°C (1273 to 1773 K) for LTI coatings and 1250 to 1600°C (1523 to 1873 K) for HTI coatings have been derived and lead to the following Arrhenius equations: On the basis of these data, releases for high-temperature-reactor cores can be calculated.