ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. J. Doroshenko, S. N. Kraitor, T. V. Kuznetsova, K. K. Kushnereva, E. S. Leonov
Nuclear Technology | Volume 33 | Number 3 | May 1977 | Pages 296-304
Technical Paper | Instrument | doi.org/10.13182/NT77-A31791
Articles are hosted by Taylor and Francis Online.
Additional possibilities in achieving high-accuracy measurements of continuous neutron spectra by track and activation detectors have been found. An analysis of energy characteristics of detectors containing 235U in boron filters of different thicknesses shows that they can be used successfully for measuring intermediate neutron spectra. Application of detectors with 231Pa and 236U considerably increases the accuracy of fast-neutron measurements. The problems associated with increasing the accuracy measurements resulted in the necessity of studying a method for minimizing a directed divergence to use it for unfolding the neutron spectra with energy from 0.4 eV to 10 MeV. A suggested variation of the method makes it possible to decrease the influence of experimental errors and composition of the detector set on the spectrum unfolding errors. The neutron spectra were measured at the Vinča, IBR JINR, and IRT-1000 reactors.