ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sadao Uchikawa
Nuclear Technology | Volume 33 | Number 1 | April 1977 | Pages 17-29
Technical Paper | Reactor | doi.org/10.13182/NT77-A31760
Articles are hosted by Taylor and Francis Online.
A three-dimensional boiling water reactor (BWR) core simulation program, COSMO-2, has been developed on the basis of a few-group coarse-mesh diffusion scheme with one mesh per assembly, in which the accuracy is improved by use of effective diffusion coefficients to accurately evaluate the net neutron current at the interface between neighboring assemblies. As an experimental verification of the COSMO-2 model, the first-cycle operation of a typical BWR is simulated, and the accuracy of the simulation is evaluated quantitatively in terms of standard deviation from the measured whole-core traveling in-core probe (TIP) data. To calculate the TIP reading from fuel assembly power obtained from COSMO-2, the relation between TIP reading and average power of fuel assemblies is generated by a three-dimensional local core analysis program, FASMO. Good agreement is obtained between measurement and calculation. The maximum value of the root-mean-square (rms) error is 6.3%, including the asymmetric nature of measured data and the measurement uncertainty (3% in rms).