ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. A. Grundl, V. Spiegel, C. M. Eisenhauer, H. T. Heaton II, D. M. Gilliam, J. Bigelow
Nuclear Technology | Volume 32 | Number 3 | March 1977 | Pages 315-319
Technical Paper | Radioisotope | doi.org/10.13182/NT77-A31755
Articles are hosted by Taylor and Francis Online.
Spontaneous fission sources of 252Cf, lightly encapsulated and with neutron source strengths approaching 1010 n/s, have been developed especially for integral cross-section measurements and neutron reaction rate calibrations. An irradiation facility at the National Bureau of Standards makes use of these sources in two well-investigated geometries. A free-field neutron flux in the range of 107 n/(cm2 s) (105 n/mm2 · s) and fluences of up to 1013 n/cm2 (1011 n/mm2) are established at the facility based only on a distance measurement and the absolute source strength of the national standard Ra-Be photoneutron source. The error in the 252Cf source strength (±1.1%) dominates the total free-field flux uncertainty of ±1.4% (1σ). Neutron scattering effects in the source capsule and support structures and neutron return from concrete and earth boundaries have been calculated and investigated experimentally. In the worst case, they contribute ±0.7% to the total flux response uncertainty for all observed neutron reaction rates, including those with sensitivity to low-energy neutrons.