ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
B. J. Wrona, J. T. A. Roberts, T. M. Galvin, G. T. Higgins
Nuclear Technology | Volume 32 | Number 3 | March 1977 | Pages 276-289
Technical Paper | Fuel | doi.org/10.13182/NT77-A31751
Articles are hosted by Taylor and Francis Online.
A direct-electrical-heating apparatus was utilized to perform fundamental experiments on short, unirradiated, unclad UO2 pellet stacks to investigate the effect of varying the energy-deposition rate and energy level on the mechanical response of the fuel to transient heating. Results show that as the rate of energy input to the UO2 pellet stacks increases, (a) the energy failure threshold decreases and (b) the areal melt fraction at failure decreases. Two significantly different regimes of fuel-motion behavior were observed above and below a threshold designated as the threshold of gross fuel motion. Above the threshold, this motion occurs by molten fuel release. Below the threshold, fuel deforms plastically by a creep mechanism.