ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
B. J. Wrona, J. T. A. Roberts, T. M. Galvin, G. T. Higgins
Nuclear Technology | Volume 32 | Number 3 | March 1977 | Pages 276-289
Technical Paper | Fuel | doi.org/10.13182/NT77-A31751
Articles are hosted by Taylor and Francis Online.
A direct-electrical-heating apparatus was utilized to perform fundamental experiments on short, unirradiated, unclad UO2 pellet stacks to investigate the effect of varying the energy-deposition rate and energy level on the mechanical response of the fuel to transient heating. Results show that as the rate of energy input to the UO2 pellet stacks increases, (a) the energy failure threshold decreases and (b) the areal melt fraction at failure decreases. Two significantly different regimes of fuel-motion behavior were observed above and below a threshold designated as the threshold of gross fuel motion. Above the threshold, this motion occurs by molten fuel release. Below the threshold, fuel deforms plastically by a creep mechanism.