ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. R. Berreth, A. P. Hoskins, J. A. Rindfleisch
Nuclear Technology | Volume 32 | Number 1 | January 1977 | Pages 16-24
Technical Paper | Materials in Waste Storage / Radioactive Waste | doi.org/10.13182/NT77-A31733
Articles are hosted by Taylor and Francis Online.
Corrosion measurements on stainless-steel bins used to store high-level waste (HLW) calcines at the Idaho Chemical Processing Plant indicate an internal corrosion rate of 0.13 mm over 500 yr. From a corrosion standpoint, the existing bins or canisters stored in air will last more than 500 yr. Synthetic commercial HLWs solidified by fluidized-bed calcination have been stabilized (nitrates and water removed) at 620 to 720°C to permit their storage in sealed canisters. Heat transfer properties in the canister storage of the basic HLW forms were calculated, based on specified canister configurations, cooling media, and maximum permissible product or canister wall temperature, for a 1500 MTU/yr commercial reprocessing plant. The number of canisters required annually varies from ∼150 to 800 canisters/yr.