ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
G. R. Odette, R. L. Simons, W. N. McElroy, D. G. Doran
Nuclear Technology | Volume 32 | Number 2 | February 1977 | Pages 125-141
Technical Paper | Reactor | doi.org/10.13182/NT77-A31718
Articles are hosted by Taylor and Francis Online.
Some limits to appropriate application and the characteristics of uncertainties in damage function analysis (DFA) for breeder reactor spectra were investigated by means of computer experiments. Simulated irradiations in available neutron spectra were evaluated in terms of simple damage models and were used to study (a) the existence of damage functions, (b) the uniqueness of damage function solutions, (c) data error propagation, and (d) procedures for combining various errors to provide a total lower-bound fluence limit for a specified property change. An important factor in achieving a successful DFA was found to be the similarity between the experimental spectra used to generate the damage function and the spectra in which it was applied.